Approximation of Random Functions

William H. Ling
Sandia Corporation, Albuquerque, Ne'w Mexico 87115
Harry W. McLaughlin
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181
AND
Mary Lynn Smith
General Electric Company, Ordnance Systems, Pitisfield, Massarhusetts 11201
Communicated by E. W. Chener.

Received June 16. 1975

1. Introduction

In this paper we study the problem of approximating two continuous functions simultaneously by one approximating function. Our motivation is the following. Let $f_{1}(x)$ and $f_{2}(x)$ be continuous real-valued functions, each defined on $a \leqslant x \leqslant b$, occurring with probabilities w_{1}^{\prime} and w_{2}, , respectively. $w_{1}-w_{2}-1$. The function F is an approximating function chosen before f_{1} and f_{2} are observed. The error is a random variable which assumes the value $\mid f_{1}-F$ with probability w_{1} and! $f_{2} \quad F$ with probability w_{2}. (Here denotes a suitably chosen norm.) Our goal is to choose F from a given approximating family so as to minimize the expected value of the error, i.c., choose F to minimize

$$
w_{1} f_{1}-F: \therefore w_{2} f_{2}-F .
$$

The direction of our investigation is a search for conditions which distinguish the minimizing F from other elements of the approximating family. When the polynomials of degree n or less are used as the approximating family and the norm is chosen to be the Chebychev norm, we find a necessary condition for the minimizing polynomial. If f_{1} and f_{2} are ordered the necessary condition is also sufficient.

Study of a related problem has been reported on in the approximation literature by Bacopoulos and others, see [1-10, 12-16].

2. A Necessary Condition for Best Approximations

For a bounded real-valued function, $g(x)$, defined on the compact real interval $[a, b]$, we define the norm of g by $\|g\|=\sup _{u \leqslant x \leqslant b} \mid g(x)_{i}^{!}$.

Our approximating family, $\overline{\mathscr{F}}$, is a family of continuous real-valued functions defined on $[a, b]$, and the two functions to be approximated, $f_{1}(x)$ and $f_{2}(x)$, are given continuous real-valued functions also defined on $[a, b]$. In addition, the weight functions, $w_{1}(x)$ and $w_{2}(x)$, are nonnegative real-valued continuous functions such that $w_{1}(x)+w_{2}(x) \cdots 1$ for each x in $[a, b]$. A function F_{0} in. \mathscr{F} is said to be a best I_{1}-approximant to f_{1} and f_{2} if

$$
\left.w_{1}\left(f_{1}-F_{0}\right) \|+w_{2}\left(f_{2} \cdots F_{0}\right)\right)=\inf _{F \sim \neq \sim}\left[w_{1}\left(f_{1}-F\right)+w_{2}\left(f_{2}-F\right)\right] .
$$

In this section we give a necessary condition for F_{0} to be a best l_{1}-approximant when the approximating family is a family of polynomials (see Theorem 2.3).

For each F in \mathscr{F} the error, $\left\|w_{1}\left(f_{1}-F\right)\right\|+\| w_{2}\left(f_{2}-F\right) \mid$, is the sum of two errors, namely $\mid w_{1}\left(f_{1}-F\right) \|$ and $w_{2}\left(f_{2}-F\right) \|$. Sometimes it will be necessary to show the dependence of these two errors on both F and $f_{i}(i=1,2)$ and sometimes it will suffice to show the dependence only on $f_{i}(i=1,2)$; so with a slight abuse of notation we write, for each F in.$\overline{\mathscr{F}}$,

$$
E_{i}=E\left(F, f_{i}\right)=w_{i}\left(f_{i}-F\right) \quad(i=1,2)
$$

Also defined are an "upper error function," $M(F, x)$, and a "lower error function." $m(F, x)$: For each F in \mathscr{F} and for each x in $[a, b]$,

$$
M(F, x)=\min _{i=1,2}\left\{f_{i}(x)+E_{i} / M_{i}(x)\right\},
$$

and

$$
m(F, x)=\max _{i=1,2}\left\{f_{i}(x)-E_{i} / w_{i}(x)\right\}
$$

If there exists x_{0} in $[a, b]$ and i (either $i=1$ or $i=2$) such that $w_{i}\left(x_{0}\right)=0$, we employ the convention, $f_{i}\left(x_{0}\right) \pm E_{i} / w_{i}\left(x_{0}\right)= \pm \infty$. However, the requirement $w_{1}\left(x_{0}\right)+w_{2}\left(x_{0}\right)=1$ guarantees that $M\left(F, x_{0}\right)$ and $m\left(F, x_{0}\right)$ are both finite.

The proof of the following lemma is straightforward and is omitted.
Lemma 2.1. For each F in \mathscr{F} and for each x in $[a, b]$ one has

$$
m(F, x) \leqslant F(x) \leqslant M(F, x)
$$

Lemma 2.2. Let F and G belong to $\sqrt[F]{ }$ such that $m(F, x)<G(x)<M(F, x)$ for all x in $[a, b]$. Then one has

$$
w_{1}\left(f_{1}-G\right)+w_{2}\left(f_{2}-G\right)<w_{1}\left(f_{1} \quad F\right) \quad+w_{2}\left(f_{2}-F\right) .
$$

Proof. For each $i(i=1,2)$ and for all x in $[a, b]$ one has. from the hypothesis,

$$
f_{i}(x)-E\left(F, f_{i}\right) / w_{i}(x)<G(x)<f_{i}(x)-E\left(F, f_{i}\right) / w_{i}(x) .
$$

This means that either $E\left(F, f_{1}\right)>0$ or $E\left(F, f_{2}\right)>0$. Thus for at least one $i(i=1,2)$

$$
-E\left(F, f_{i}\right)<w_{i}(x)\left[f_{i}(x)-G(x)\right]<E\left(F, f_{i}\right)
$$

for all x in $[a, b]$, and for the other i,

$$
-E\left(F, f_{i}\right) \leqslant w_{i}(x)\left[f_{i}(x)-G(x)\right] \leqslant E\left(F, f_{i}\right)
$$

for all x in $[a, b]$. Since all the functions are continuous, one concludes that for at least one $i, w_{i}\left(f_{i}-G\right)!<E\left(F, f_{i}\right)$ and for the other i. $\mid w,\left(f_{i} \ldots\right.$ $G) \leqslant E\left(F, f_{i}\right)$. Thus,

$$
\begin{aligned}
& w_{1}\left(f_{1}-G\right)+\left|w_{2}\left(f_{2}-G\right)\right|<E\left(F, f_{1}\right) \cdots E\left(F, f_{2}\right) \\
& w_{1}\left(f_{1}-F\right)-\left(w_{2}\left(f_{2} \quad f\right)\right.
\end{aligned}
$$

Remark. The above proof shows that if $m(F, x)<G(x)<M(F, x)$ for all x in $[a, b]$ then for one $i, \| w_{i}\left(f_{i}-G\right)<E\left(F, f_{i}\right)$ and for the other $i, \quad w_{i}\left(f_{i}\right.$ $G) \leqslant E\left(F, f_{i}\right)$, which is a stronger conclusion than the conclusion of the lemma as stated.

Our aim now is to show that if F in \bar{F} is a best l_{1}-approximant to f_{1} and f_{2} then it is a best approximant in another sense. to two functions related to f_{1} and f_{2}. Known necessary conditions for best approximation in this other sense, can then be translated to necessary conditions for best l_{1}-approximation. The next definition is made for this purpose.

Definition 2.1. A function F_{0} in \mathscr{F} is said to be a best l_{∞}-approximant to two continuous real-valued functions, $g_{1}(x), g_{2}(x)$ defined on $[a, b]$ if

$$
\left.\max _{\{1} g_{1}-F_{0}, \mid g_{2}-F_{0}\right\}=\inf _{F \in \mathbb{X}} \max \left\{\left\|g_{1} \quad F\right\|, \| g_{2}-F\right\}
$$

The following theorem establishes a connection between the l_{1}-problem and the l_{n}-problem.

Theorem 2.1. Let F belong to \mathscr{F}, and define $g_{1}(x)=m(F, x)+\| M(F)-$ $m(F) \|$ and $g_{2}(x)=M(F, x)-\|M(F)-m(F)\|$, for all x in $[a, b]$. If F is a best l_{1}-approximant to f_{1} and f_{2} then F is a best l_{x}-approximant to g_{1} and g_{2}.

Proof. Lemma 2.2 guarantees that for each G in \mathscr{F} there exists an x_{0} in [$a, b]$ such that either $G\left(x_{0}\right) \geqslant M\left(F, x_{0}\right)$, or $G\left(X_{0}\right) \leqslant m\left(F, X_{0}\right)$. Thus, either $\left\|g_{2}-G\right\| \geqslant\|M(F)-m(F)\|$ or $\left\|g_{1}-G\right\| \geqslant \| M(F)-m(F)$. Thus, inf $\inf _{G \in}$ $\max \left\{\left|g_{1}-G \|,\left|\left|g_{2}-G\right|\right\} \geqslant|M(F)-m(F)|\right.\right.$. On the other hand, using Lemma 2.1 and the fact that $g_{2} \leqslant g_{1}$ gives

$$
\left\|g_{2}-F\right\| \leqslant \| M(F)-m(F) \quad \text { and } \quad\left|g_{1}-F\right| \leqslant \mid M(F)-m(F) \|
$$

It follows that

$$
\inf _{G \in \mathscr{F}} \max \left\{\left\|g_{1}-G\right\|, g_{2}-G \|=\max \left\{\left|g_{1}-F, \| g_{2}-F\right|\right\}\right.
$$

i.e., F is a best l_{x}-approximant to g_{1} and g_{2}.

Remark. The above proof does not use the fact that F is a best l_{1}-approximant to f_{1} and f_{2}. It uses the fact that there exists no G in \mathscr{F} such that both $E\left(G, f_{1}\right)<E\left(F, f_{1}\right)$ and $E\left(G, f_{2}\right)<E\left(F, f_{2}\right)$. There are in general many such elements F in \mathscr{F}. Theorem 2.1 then allows one to state necessary conditions for these F 's in terms of known necessary conditions for the best l_{x}-approximants to the corresponding g_{1} 's and $g_{2}{ }_{2}$ s.

In [12], e.g., conditions are given which are necessary for F to be a best l_{x}-approximant to g_{1} and g_{2}. We repeat them here, but to do so requires the following two definitions [12].

Definition 2.2. A point x_{0} in $[a, b]$ is called an l_{α}-straddle point for $F($ in $\mathscr{F})$ with respect to $g_{1}(x)$ and $g_{2}(x)\left(g_{2}(x) \leqslant g_{1}(x)\right.$ for all x in $\left.[a, b]\right)$ if

$$
\max \left\{\left\|g_{1}-F|,| g_{2}-F\right\|\right\} \cdots g_{1}\left(x_{0}\right)-F\left(x_{0}\right)=F\left(x_{0}\right)-g_{2}\left(x_{0}\right) .
$$

(We observe that such an F is necessarily a best l_{x}-approximant to g_{1} and g_{2}.)
Definition 2.3. An l_{x}-approximant, F (in $\left.\mathscr{F}\right)$, to $g_{1}(x)$ and $g_{2}(x)\left(g_{2}(x)\right.$ $g_{1}(x)$ for all x in $\left.[\mathrm{a}, \mathrm{b}]\right)$ is said to l_{α}-alternate n times on $[a, b]$ if there exist $n+1$ points, $x_{i}(0 \leqslant i \leqslant n), a \leqslant x_{0}<x_{1}<\cdots<x_{n} \leqslant b$ such that at least one of the following two conditions hold.
(1) For each even i in $\{0,1, \ldots, n\}$ and for each odd j in $\{0,1, \ldots, n\}$ both $g_{1}\left(x_{i}\right)-F\left(x_{i}\right)$ and $F\left(x_{j}\right)-g_{2}\left(x_{j}\right)$ assume the value max $\left\{g_{1}-F\right\}$, $\left\|g_{2}-F\right\|$, or
(2) the same is true for each odd i and each even j in $\{0,1, \ldots, n\}$.

The following theorem deals with the case when the approximating family \mathscr{F} is P_{n}, the polynomials of degree n or less.

Theorem 2.2 (see, e.g., [12]). The element F in P_{n} is a best l_{x}-approximant to the continuous real functions $g_{1}, g_{2}\left(g_{2}(x) \leqslant g_{1}(x)\right.$ for all x in $\left.[a, b]\right)$ if and only if F has an I_{x}-stranddle point with respect to g_{1} and g_{2} or $F l_{x}$-alternates $n+1$ times.

To translate this characterization to the l_{1} problem we need two definitions.
Definition 2.4. A point x_{11} in $[a, b]$ is said to be an t_{1}-straddle point for $F($ in $\mathscr{F})$ with respect to f_{1} and f_{2} if $m\left(F, x_{0}\right) \quad M\left(F, x_{11}\right)$.

Definition 2.5. An l_{1}-approximant F (in \bar{F}) to f_{1} and f_{2} is said to l_{1} alternate n times on $[a, b]$ if there exist $n+1$ points $a<x_{1}<$ $x_{1}<\cdots<x_{n} \leqslant b$ such that at least one of the following two conditions holds.
(1) For each even i in $\{0,1, \ldots, n\}$ and for each odd j in $\{0,1, \ldots, n\}$ both $M\left(F, x_{i}\right)=F\left(x_{i}\right)$ and $m\left(F, x_{j}\right) \cdots F\left(x_{j}\right)$, or
(2) the same is true for each odd i and each even j.

The following theorem is the main theorem of this section.
Theorem 2.3. If the element F in P_{n} is a best l_{1}-approximant to the two real continuous functions $f_{1}(x), f_{2}(x), a \leqslant x \leqslant b,\left(f_{1}\right.$ and f_{2} are not necessarily ordered) then either F has an l_{1}-straddle point or $F l_{1}$-alternates n times.

Proof. The proof follows in a straightforward manner from Theorems 2.1 and 2.2.

The following example shows that F may alternate without being a best I_{1} approximant.

Example. Let $[a, b]=[-2,2], w(x)=w_{2}(x)=\frac{1}{2}$,

$$
\begin{aligned}
f_{1}(x) & =x+2, & & 2 \leqslant x \leqslant 0, \\
& =-x+2, & & 0<x \leqslant 2, \\
f_{2}(x) & =x+3, & & 2 \leqslant x \leqslant 0, \\
& =\left(-\frac{3}{2}\right) x+3, & & 0<x \leqslant 2
\end{aligned}
$$

and $\mathscr{F}=P_{1}$. It is easily checked that $F(x)=(-1 / 4) x+7 / 4 l_{1}$-alternates two times on $[-2,2]$. However, $F(x)$ is not a best l_{1}-approximant. Indeed, the best l_{1}-approximants to f_{1} and f_{2} are exactly the polynomials of the form $F(x)=K, 1 \leqslant K \leqslant \frac{3}{2}$.

Remark. It can be shown that if a given F in P_{n}, l_{1}-alternates n times on $[a, b]$ then for each $G \in P_{n}, G \neq F$ either $E\left(G, f_{1}\right)>E\left(F, f_{1}\right)$ or $E\left(G, f_{2}\right)>$
$E\left(F, f_{2}\right)$. This observation could form the basis of a computational technique for computing best l_{1}-approximants from P_{n}. In [15] a computational technique is discussed which does not use this observation but which could be modified to do so.

Since l_{1}-alternation is not sufficient to ensure best l_{1}-approximation it would be convenient to know how the definition of alternation must be altered to obtain a sufficient condition. The authors believe that such a discovery would lead to a more efficient computational technique than that discussed in [15].

3. l_{1}-Approximation of Ordered Functions

We consider now the problem of approximating in the l_{1} sense, two real continuous functions, $f_{1}(x)$ and $f_{2}(x)$, which are pointwise ordered: $f_{2}(x)$ g $f_{1}(x)$ for all x in $[a, b]$. The approximating family, $\overline{\mathscr{F}}$, is assumed to be a linear family of real continuous functions on $[a, b]$ and for ease of exposition we assume the weight functions $w_{1}(x)$ and $w_{2}(x)$ are identically equal to one on $[a, b]\left(w_{1}(x)=w_{2}(x)=1\right)$. Our goal is to show that when $f_{1}(x) \leqslant f_{1}(x)$ for all x in $[a, b]$ and when $\mathscr{F}:=P_{n}$, there exists a theorem which gives necessary and sufficient conditions for best l_{1}-approximation in terms of alternation and straddle points.

Lemma 3.1. Let $f_{2}(x) \leqslant f_{1}(x)$ for all x in $[a, b]$ and F in \mathcal{F} be a best $l_{1}-$ approximant to f_{1} and f_{2}. Then there exist an x_{1} and x_{2} in $[a, b]$ such that $F\left(x_{1}\right) \quad f_{1}\left(x_{1}\right)-E\left(F, f_{1}\right)$ and $F\left(x_{2}\right)=f_{2}(x)+E\left(F, f_{2}\right)$.

Proof. We prove that x_{1} exists. That x_{2} exists can be shown using similar ideas. The proof is by contraposition. Assume that there does not exist such an x_{1}. i.e.. $F(x)>f_{1}(x)-E\left(F, f_{1}\right)$ for all x in $[a, b]$. Since both $F(x)$ and $f_{1}(x)$ are continuous on $[a, b]$, there exists x_{0} in $[a, b]$ such that $F\left(x_{0}\right)$ $f_{1}\left(x_{0}\right)-E\left(F, f_{1}\right)$. Further, $F(x) \leqslant f_{2}(x)+E\left(F, f_{2}\right)$ for all x, so in particular, $F\left(x_{0}\right) f_{2}\left(x_{1}\right)+E\left(F, f_{2}\right)$. Thus $f_{1}\left(x_{10}\right)+E\left(F, f_{1}\right) \leqslant f_{2}\left(x_{0}\right)+E\left(F, f_{2}\right)$, or $f_{1}\left(x_{0}\right)-$ $f_{2}\left(x_{0}\right)=E\left(F, f_{2}\right) \cdots E\left(F, f_{1}\right)$. Since the left-hand side is nonnegative. one concludes that $E\left(F, f_{1}\right) \leqslant E\left(F, f_{2}\right)$.

Thus

$$
f_{1}(x)-E\left(F, f_{1}\right) \geqslant f_{0}(x)-E\left(F, f_{2}\right)
$$

for all x in $[a, b]$ and using the original assumption, one has, $F(x)>f_{2}(x)-$ $E\left(F, f_{2}\right)$ for all x in $[a, b]$. Recalling the definition of $m(x)$, given in Section 2, we have shown that $F(x)>m(x)$ for all x in $[a, b]$. Now defining $c=\frac{1}{2}$ $\min _{n<b}(F(x)-m(x))$, and noting that c is positive, one has $M(x)>$ $F(x)-c>m(x)$ for all x in $[a, b]$. Using Lemma 2.2, and the fact that \mathscr{F} is
a linear family, one concludes that $F(x)-x$ is a better l_{1}-approximant to f_{1} and f_{2} than is $F(x)$.

Lemma 3.2. Let $f_{2}(x)=f_{1}(x)$ for all x in $[a, b]$ and F in $\left\{\right.$ be a best $l_{1}-$ approximant to f_{1} and f_{2}, and define $c \cdots \frac{1}{2}\left(E\left(F, f_{1}\right)-E\left(F, f_{2}\right)\right)$. Then F cis also a best l_{1}-approximant to f_{1} and f_{2} and further $E\left(F \cdots c \cdot f_{1}\right)=E\left(F-c, f_{2}\right)$.

Proof. We assume first that $E\left(F, f_{1}\right) \cdots E\left(F, f_{2}\right)$. Using the previous lemma one concludes that $E\left(F \cdots c, f_{2}\right) \cdots E\left(F, f_{2}\right) \cdots$. We show next that $E(F \cdots c$. $\left.f_{1}\right) \cdots E\left(F, f_{1}\right) \quad c$. On one hand one has $F(x) \quad\left(\cdots f_{2}(x) \cdots E\left(F, f_{2}\right) \quad c\right.$ $f_{2}(x)-E\left(F, f_{1}\right)-c \in f_{1}(x) \mid E\left(F, f_{1}\right) \cdots c$ for all x in $[a, b]$. And on the other hand, $F(x) \cdots c=f_{1}(x)-E\left(F, f_{1}\right) \cdots c=f_{1}(x)-\left(E\left(F, f_{1}\right) \quad\right.$ c) for all x on $[a, b]$ with equality holding for at least one x by the previous lemma. Hence $E\left(F-c, f_{1}\right)-E\left(F, f_{1}\right) \cdots c$. Combining these results gives $E(F \cdots c$. $\left.f_{1}\right)+E\left(F: c, f_{2}\right) \cdots E\left(F, f_{1}\right)+E\left(F, f_{2}\right)$ Thus $F \cdots c$ is a best l_{1}-approximant. It is clear that $E\left(F, c, f_{1}\right) \quad E\left(F \cdots c, f_{2}\right)$. The case, $E\left(F, f_{1}\right)<E\left(F, f_{2}\right)$ is treated similarly. The case $c \quad 0$ is trivial.

Remark 3.1. If one assumes, e.g., that \mathscr{F} is a finite-dimensional linear family it is easy to prove that f_{1} and f_{2} have a best f_{1}-approximant. We note that Lemma 3.2 therefore guarantees the existence of a best l_{1}-approximant to f_{1} and $f_{2}\left(f_{2} \quad f_{1}\right)$ with equal errors.

Lemma 3.3. Let F in $\overline{\mathcal{F}}$ be a best l_{1}-approximant to f_{1} and f_{2} with $E\left(F, f_{1}\right)$ $E\left(F, f_{2}\right)$. Then F is a best I_{x}-approximant to f_{1} and f_{2}.

Proof. The proof follows from the fact that for every G in \mathscr{F}

$$
\begin{aligned}
2 \max \left\{f_{1}-G \cdot f_{2}-G:\right. & E\left(G, f_{1}\right)+E\left(G, f_{2}\right) \\
& E\left(f_{1} f_{1}\right)+E\left(F, f_{2}\right) \quad 2 \max \left\{f_{1} \cdots f\right. \\
& \left.f_{2}-F\right\}
\end{aligned}
$$

Remark 3.2. The above two lemmas show that when \mathscr{F} is a linear family and $f_{2}(x), f_{1}(x)$ for all x in $[a, b]$ then every best l_{1}-approximant is a translate of some best l_{0}-approximant.

Remark 3.3. We note that the proof of Lemma 3.3 does not depend upon the linearity of \mathscr{F} nor the ordering of f_{1} and f_{2}.

Lemma 3.4. Let f_{1}, f_{2} be given with $f_{2}(x) \quad f_{1}(x)$ for all x in $[a, b]$. Assume F in π is a best l_{x}-approximant to f_{1}, f_{2} and let

$$
c_{2} \quad\left[\max _{x \subseteq[a, b \mid}\left(f_{1}(x)-F(x)\right)-\min _{x \in[a, b]}\left(f_{1}(x)-F(x)\right)\right] / 2
$$

and

$$
\left.c_{1} \quad \mid \max _{x \in[a, b]}\left(f_{2}(x)-F(x)\right) \therefore \min _{x \in[a, b]}\left(f_{2}(x)-F(x)\right)\right] / 2
$$

Then the following are true.
(a) $c_{2} \geqslant 0$, and $c_{1} \leqslant 0$.
(b) If $c \in\left[c_{1}, c_{2}\right]$, then $F+c$ is a best l_{1}-approximant to f_{1}, f_{2}. In particular. F is a best l_{1}-approximant to $f_{1} . f_{2}$.
(c) If $c \subset\left(\cdots, c_{1}\right) \cup\left(c_{2},-\infty\right)$, then $F: c$ is not a best l_{1}-approximant to f_{1}, f_{2}.

Proof. It is convenient to show first that F is a best l_{1}-approximant to f_{1} and f_{2}. To see this we note that $E\left(F, f_{1}\right): E\left(F, f_{2}\right)$ (which can be easily verified). Now let G in $\overline{\mathcal{F}}$ be a best l_{1}-approximant to f_{1} and f_{2} with the property that $E\left(G, f_{1}\right)=E\left(G, f_{2}\right)$. Then one has

$$
\begin{aligned}
E\left(F, f_{1}\right)+E\left(F, f_{2}\right) & =2 \max \left\{\mid F-f_{1}, F-f_{2}\right\} \\
& =2 \max \left\{G-f_{1} \| G-f_{2}\right\} \\
& =E\left(G, f_{1}\right)+E\left(G, f_{2}\right) .
\end{aligned}
$$

which means that F is also a best l_{1}-approximant to f_{1} and f_{2}.
Since F is a best I_{1}-approximant, Lemma 3.1 may be employed yielding $\max _{x \in[\cdots, b]}\left(f_{1}(x)-F(x)\right)-E\left(F, f_{1}\right) . \min _{x \in[n, b]}\left(f_{1}(x) \cdots F(x)\right) \geqslant-E\left(F, f_{1}\right)$ and thus $c_{2} \geq 0$. Similarly $c_{1} \leqslant 0$ holds. We prove next part (b) and (c) of the lemma.

Let $c \in\left[0, c_{2}\right]$. From Lemma 3.1, it follows that $E\left(F: c, f_{2}\right)-E\left(F, f_{2}\right)-c$. We show that $E\left(F+c, f_{1}\right)=E\left(F, f_{1}\right) \cdots c$.

First observe that $F(x)+c \geqslant f_{1}(x) \quad E\left(F, f_{1}\right)+c-f_{1}(x)-\left(E\left(F, f_{1}\right)-c\right)$ is valid on $[a, b]$, with equality for some value of x. due to Lemma 3.1. Second, note that $c \leqslant c_{2}=\left[E\left(F, f_{1}\right)+\min _{x \in[n, i]}\left(f_{1}(x) \cdots F(x)\right] / 2\right.$ implies that $c \in\left[E\left(F, f_{1}\right)+\left(f_{1}(x)-F(x)\right)\right] / 2$ for all $x \in[a, b]$. Rearranging this last inequality yields $F(x)-c \leqslant f_{1}(x)+E\left(F, f_{1}\right)-c$ on $[a, b]$. Therefore $E\left(F+c, f_{1}\right)=E\left(F, f_{1}\right) \cdots c$ and we obtain $E\left(F-c, f_{1}\right) \cdots E\left(f-c, f_{2}\right)=$ $E\left(F, f_{1}\right)+E\left(F, f_{2}\right)$.

Next let $c \in\left(c_{2},+\infty\right)$. Again by Lemma 3.1, we have $E\left(F-c, f_{2}\right)$ $E\left(f, f_{2}\right)+c$. However with $c \because c_{2}$, a rearrangement of this inequality yields, $E\left(F+c, f_{1}\right)>E\left(F, f_{1}\right)-c$. Thus $E\left(F+c, f_{1}\right) \cdots E\left(F \cdots c, f_{2}\right)$ $E\left(F, f_{1}\right) \cdots E\left(F, f_{2}\right)$ and therefore $F-c$ is not a best l_{1}-approximant to f_{1}, f_{2}.

A similar argument for $c \in\left[c_{1}, 0\right]$ and $c \in\left(-\infty, c_{1}\right)$ completes the proof.
We conclude Section 3 with an alternation theorem for a best t_{1}-approximant of two ordered functions.

ThForem 3.1. Let $f_{1}(x)$ and $f_{2}(x)$ be real-ralued continuous functions with $f_{2}(x) \leqslant f_{1}(x)$ for all x in $[a, b]$. Let the approximating family \mathcal{F} be the polynomials of degree n or less, and let F belong to \mathscr{F}. Then F is a best l_{1}-approximant to f_{1} and f_{2} if and only if at least one of the following three conditions holds.
(1) There exist points $x_{i}\left(0, k\right.$ n) such that $a=x_{0}<x_{1}<\cdots \cdots$ $x_{n} \leqslant b$ and such that for each even i in $\{0,1, \ldots, n\}$ and for each odd j in $\{0,1, \ldots, n\}$ both $F\left(x_{i}\right)-f_{2}\left(x_{i}\right)+E\left(F, f_{2}\right)$ and $F\left(x_{i}\right) \cdots f_{1}\left(x_{i}\right)-E\left(F, f_{1}\right)$:
(2) condition (1) holds for each odd i and each even j :
(3) there exists an x_{11} in $[a, b]$ such that

$$
f_{1}\left(x_{1}\right)-E\left(F, f_{1}\right)-f_{2}\left(x_{0}\right)+E\left(F, f_{2}\right)
$$

(We think of the phenomena of conditions (1) and (2) as alternation phenomena; e.g., if condition (1) holds we say that $F(x)$ alternates between $f_{2}(x) \quad E\left(F, f_{2}\right)$ and $f_{1}(x)-E\left(F, f_{1}\right)$)

Proof. Case 1. Assume $E\left(F, f_{1}\right) \cdots E\left(F, f_{2}\right)$. If F is a best l_{1}-approximant then F is a best l_{s}-approximant and the proof follows from Theorem 2.2. On the other hand. if one of the three conditions holds, then F is a best I_{r} approximant by Theorem 2.2 and hence a best l_{1}-approximant.

Case 2. Assume $E\left(F, f_{1}\right) \cdots E\left(F . f_{2}\right)$. The case $E\left(F, f_{1}\right)<E\left(F, f_{2}\right)$ can be argued in a similar manner.) Choose the real number c such that $F+c$ is a best l_{1}-approximant to f_{1} and f_{2} and $E\left(F+c, f_{1}\right)=E\left(F \therefore c, f_{2}\right)$. From the proof of Lemma 3.3 one has that $E\left(F+c, f_{1}\right)-E\left(F, f_{1}\right)-c$ and $E(F=$ $\left.c, f_{2}\right) \quad E\left(F, f_{2}\right) \quad c$. This observation allows one to reduce Case 2 to Case 1 where $F \ldots$ c plays the role of F in Case 1.

The following example demonstrates that the ordering assumption, $f_{2} f_{1}$. in Theorem 3.1 is necessary.

Example. (For simplicity we describe the example in lieu of a lengthy constructive presentation.) Let $\quad P_{1}$ and $[a, b] \quad[0,1]$. One can easily construct two nonordered functions, f_{1}, f_{2} such that: (a) $F \quad 0$ is a best I_{1} approximation from P_{1}. (b) F is a best Chebyshev approximation to both f_{1} and f_{2} from P_{1}. (c) alternation of $F(x)$ between $f_{2}(x) \because E\left(F, f_{2}\right)$ and $f_{2}(x) \cdots$ $E\left(F, f_{2}\right)$ occurs in $\left[0, \frac{1}{2}\right)$. (d) alternation of $F(x)$ between $f_{1}(x) \quad E\left(F . f_{1}\right)$ and $f_{1}(x)-E\left(F, f_{1}\right)$ occurs in (! 1] , and yet (c) F does not alternate twice in the f_{1} sense between either $f_{1}(x) \quad E\left(F, f_{1}\right)$ and $f_{2}(x): E\left(F, f_{2}\right)$ or between $f_{2}(x)-E\left(F, f_{2}\right)$ and $f_{1}(x) \quad E\left(F, f_{2}\right)$. Note, however, that F will alternate twice in the l_{1} sense between $M(F, x)$ and $m(F, x)$.

4. Common Alterdation Points

In this section we investigate further the l_{1}-approximation problem as discussed in Section 2. Specifically, we are not assuming that the functions $/ /_{1}$ and f_{2} are ordered and we are not assuming that the weight functions w_{1} and H_{2} are both identically one. We do specialize the problem by assuming that
the approximating family, \mathscr{F}, is linear. The real continuous functions $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x) a \leqslant x \leqslant b$, are given and assumed to be linearly independent over the real numbers. The family \mathscr{F} consists of exactly those functions of the form $a_{1} \phi_{1}(x)+\cdots-a_{n} \phi_{n}(x)$ where a_{i} is real, 1 a Letting A denote the vector $\left(a_{1}, \ldots, a_{n}\right)$ in E^{n} (n-dimensional Euclidean space), we denote (with slight abuse of notation) the general element of π by $F-F(A)=F(A, x)=a_{1} \phi_{1}(x)+\cdots-a_{n} \phi_{n}(x)$. Elements of \mathscr{F} can then be represented by their corresponding vectors A. The two functions f_{1} and f_{2} will in general have many best l_{1}-approximants: we write
$R \quad\left\{A \in E^{n}: F(A)-f_{1}+F(A)-f_{2}=\inf _{F=F}\left[\begin{array}{llll}F & f_{1} & F & F\end{array}\right]:\right.$
The set R in E^{x} can be thought of as representing the best l_{1}-approximants to f_{1} and f_{2}. Standard arguments show that R is compact, convex, and nonempty. In particular, if $F\left(A_{1}, x\right)$ and $F\left(A_{2}, x\right)$ are both best t_{1}-approximants to f_{1} and f_{2} then so is $F\left(A_{3}, x\right)$ where $A_{3}=\lambda A_{1}+(1 \quad \lambda) A_{2}, 0, \lambda \leqslant 1$. We use the notation $E(A, f)-E(F(A), f)$ in what follows.

Lemma 4.1. Let $F\left(A_{1}, x\right), F\left(A_{2}, x\right)$ be best l_{1}-approximants to f_{1}, f_{2} from原. If $A_{3}=\lambda A_{1}+(1-\lambda) A_{2}$, for $0<\lambda, 1$, then $E\left(A_{3}, f_{i}\right) \quad \lambda E\left(A_{1}, f_{i}\right) \cdots$ (1-1) $E\left(A_{2}, f_{i}\right), 1=i=2$.

Proof. Since $F\left(A_{3}, x\right)$ is a best I_{1}-approximation.

$$
\begin{aligned}
& E\left(A_{3}, f_{1}\right)+E\left(A_{3}, f_{2}\right) \\
& \lambda\left(E\left(A_{1}, f_{1}\right) \div E\left(A_{1}, f_{2}\right)\right)(1-\lambda)\left(E\left(A_{2}, f_{1}\right) \cdots E\left(A_{2}, f_{2}\right)\right) \\
&=- {\left[\lambda E\left(A_{1}, f_{1}\right) \cdots(1-\lambda) E\left(A_{2}, f_{1}\right)\right] } \\
& \cdots\left[\lambda E\left(A_{1}, f_{2}\right)-(1-\lambda) E\left(A_{2}, f_{2}\right)\right] .
\end{aligned}
$$

But for each $i, 1 \leqslant i \leqslant 2$,

$$
\left.\left.\begin{array}{rl}
E\left(A_{3}, f_{i}\right)= & w_{i}\left(f_{i}-F\left(A_{3}, \cdot\right)\right. \\
= & w_{i}\left[f_{i}-\left(\lambda F\left(A_{1},\right)+(1-\lambda) F\left(A_{2}, \cdot\right)\right)\right] \\
& \leqslant \lambda E\left(\mathrm{~A}_{1}, f_{i}\right)-(1
\end{array}\right]\right) E\left(A_{2}, f_{i}\right) .
$$

Combining these remarks, we obtain $E\left(A_{3}, f_{i}\right)=\lambda E\left(A_{i}, f_{i}\right)-(1 \cdots \lambda)$ $E\left(A_{2}, f_{i}\right), 1=2$.

Lemma 42 Let $F\left(A_{1}, x\right), F\left(A_{2}, x\right)$ be best l_{1}-approximants from to f_{1}, f_{2} Let $A_{3}=\lambda A_{1}-(1-\lambda) A_{2}, 0<\lambda<1$ Then
(a) $F\left(A_{3}, x_{0}\right)=f_{i}\left(x_{0}\right)-E\left(A_{3}, f_{i}\right) / w_{i}\left(x_{0}\right)$ if and only if
$F\left(A_{1}, x_{0}\right)=f_{i}\left(x_{0}\right)-E\left(A_{1}, f_{i}\right) / w_{i}\left(x_{0}\right)$ and
$F\left(A_{2}, x_{0}\right)=f_{i}\left(x_{0}\right)-E\left(A_{2}, f_{i}\right) / w_{i}\left(x_{0}\right), 1 \leqslant i \leqslant 2, x_{0} \in[a, b]$ and
(b) a similar statement holds with a plus sign.

Proof. We prove part (a). Since $w_{i}\left(x_{0}\right)=0$ implies that all three expressions above are minus infinity, we may assume $w_{i}\left(x_{0}\right) \div 0$.

Suppose $F\left(A_{3}, x_{0}\right)=f_{i}\left(x_{0}\right)-E\left(A_{3}, f_{i}\right) / w_{i}\left(x_{0}\right)$. Using Lemma 4.1, we have $\lambda E\left(A_{1}, f_{i}\right) w_{i}\left(x_{0}\right)-1(1-\lambda) E\left(A_{2}, f_{i}\right) / u_{i}\left(x_{0}\right)=E\left(A_{33}, f_{i}\right) / w_{i}^{\prime}\left(x_{0}\right) \cdots f_{i}\left(x_{0}\right)$ $F\left(A_{3}, x_{0}\right)=\lambda\left(f_{i}\left(x_{0}\right)-F\left(A_{1}, x_{0}\right)\right)+(1-\lambda)\left(f_{i}\left(x_{0}\right)-F\left(A_{2}, x_{0}\right)\right) \leq \lambda E\left(A_{1}\right.$, $f_{i} / w_{i}\left(x_{0}\right) \quad(1-\lambda) E\left(A_{2}, f_{i}\right) / w_{i}\left(x_{0}\right)$. Since the first and last terms are the same, equality holds throughout. We obtain

$$
F\left(A_{i}, x_{0}\right) \quad f_{i}\left(x_{0}\right)-E\left(A_{j}, f_{i}\right) j w_{i}\left(x_{0}\right) \quad \text { for } j=1 \text { and } j=2
$$

On the other hand, suppose $F\left(A_{i}, x_{0}\right) \quad f_{i}\left(x_{0}\right)-E\left(A_{j}, f_{i}\right) / w_{i}\left(x_{0}\right)$ for $j=1$ and 2. Then $f_{i}\left(x_{0}\right) \cdots F\left(A_{3}, x_{0}\right)-\lambda\left(f\left(x_{0}\right)-F\left(A_{1}, x_{0}\right)\right):(1-\lambda)\left(f_{i}\left(x_{0}\right)-\right.$ $\left.\Gamma\left(A_{2}, x_{0}\right)\right) \quad \lambda E\left(A_{1}, f_{i}\right) / \omega_{i}\left(x_{0}\right)+(1-\lambda) E\left(A_{2}, f_{i}\right) / w_{i}\left(x_{0}\right) \quad . \quad E\left(A_{3}, f_{i}\right) \omega_{i}\left(x_{0}\right)$ using Lemma 4.1 Thus we have $F\left(A_{3}, x_{0}\right)=f_{i}\left(x_{0}\right)-E\left(A_{3}, f_{i}\right) w_{i}\left(x_{0}\right), i==1,2$.

We turn next to the main result of this section. Recall that the set R defined earlier consists of all those parameters A in E^{n} which yield a best l_{1}-approximants. We shall say that a point $A \in R$ is an interior point of R if A is a strict convex combination of the boundary points of every line segment in R containing A. We also introduce the following terminology. A set of points $a<x_{1}<x_{1}<x_{2}<\cdots x_{n} b$ will be called an alternation set for A if $F(A, x)$ alternates between $M(F(A, x), x)$ and $m(F(A, x), x)$ on $\left\{x_{i}\right\}_{i-1, j}^{\eta}$ in the sense of Definition 2.5. Further, a point x_{0} in $[a, b]$ will be called an extreme point for A if either $F\left(A, x_{0}\right) \cdots M\left(F\left(A, x_{1}\right), x_{0}\right)$ or $F\left(A, x_{0}\right) \cdots m\left(F\left(A, x_{10}\right), x_{1}\right)$.

Theorem 4.1. Let f_{1}, fo be giten and let R be the parameter set of best 1_{1}-approximants from where is a linear family as described aboce. Assume A_{3} is an interior point of R.
(a) If $\operatorname{ext}\left(A_{3}\right)$ is a set of extreme points for A_{3}, then $\operatorname{cxt}\left(A_{3}\right)$ is a set of extreme points for every A in R.
(b) If $\operatorname{alt}\left(A_{3}\right)$ is a set of alternation points for A_{3}, then $\operatorname{alt}\left(A_{3}\right)$ is a set of alternation points for every A in R.
(c) If x_{0} is an l_{1}-straddle point for A_{3}, then x_{0} is an l_{1}-straddle point for cuery A in R.

Proof. We prove part (b). Parts (a) and (c) are shown in a similar manner.
Let A be any element of R and consider the line segment in R determined by A and A_{3}. Call A_{1}, A_{2} the boundary points of this line segment. Suppose that x_{k} is in alt $\left(A_{3}\right)$. Then we have $F\left(A_{3}, x_{k}\right) \quad f_{i}\left(x_{k}\right)-E\left(A_{3}, f_{i}\right) / H_{i}\left(x_{k}\right)$ for some choice of $i, 1 \leqslant i: 2$, and some choice of + . Applying Lemma 4.2 twice, it follows that $F\left(A, x_{k}\right)-f_{i}\left(x_{k}\right) \pm E\left(A, f_{i}\right) / w_{i}\left(x_{k}\right)$ for the same choice of i and the same choice of \quad. . Since this is true for every x_{h} in alt $\left(A_{3}\right)$, alt $\left(A_{3}\right)$ is an alternation set for A.

Remark. Let $\mathscr{F}=\cdots P_{n}$ and let A_{3} be in the interior of the set R. Observe that if $F\left(A_{3}, x\right)$ alternates in the l_{1} sense, then Theorem 4.1 guarantees that every best l_{1}-approximant alternates at least $n+1$ times.

We close Section 4 with an example which illustrates Theorem 4.1.
Example. Let $[a, b]=[-1,1], w_{1}(x)=w_{2}(x) \equiv \frac{1}{2}$,

$$
\begin{gathered}
\mathscr{F}=P_{0}, f_{1}(x)=x^{2}, \\
f_{2}(x)=x-\frac{7}{4}, \quad-1 \leqslant x \leqslant-\frac{1}{2}, \\
=-x+\frac{3}{4},
\end{gathered} \quad-\frac{1}{2}<x \leqslant \frac{1}{2}, \quad x-\frac{1}{4}, \quad 1<x \leqslant 1 . \quad .
$$

It is easily checked that $R=\left[\frac{1}{2}, \frac{3}{4}\right]$, and the error $\rho-=\frac{5}{8}$. For every $A \in$ int $(R)-\left(\frac{1}{2}, \frac{3}{4}\right), \operatorname{alt}(A)=\left\{-\frac{1}{2}, 0\right\}$ is an alternation set for A. In fact $\left\{-\frac{1}{2}, 0\right\}$ are the only extreme points for $A \in\left(\frac{1}{2}, \frac{3}{4}\right)$. As predicted by Theorem 4.1, $\left\{--\frac{1}{2}, 0\right\}$ is also an alternation set for the boundary parameters $A_{1}=\frac{1}{2}$ and $A_{2}=\frac{3}{4}$. However, for the boundary parameters additional extreme points may exist. A simple diagram shows that in fact $\left\{-\frac{1}{2}, 0,-1,1\right\}$ are extreme points for A_{1} and $\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$ are extreme points for A_{2}.

References

1. A. Bacopoulos, Nonlinear Chebychev approximation by vector norms, J. Approximation Theory 2 (1969), 79-84.
2. A. Bacopoulos and G. D. Taylor, Vectorial approximation by restricted rationals, Math. Systems Theory 3 (1969), 232-243.
3. A. Bacopoulos, On approximation by sums of Chebychev norms, Numer. Math. 16 (1970), 243-247.
4. A. Bacopoulos, Deux généralisations de l'approximation de Tchebichef Vérifant des contraintes d'interpolation, C. R. Acad. Sci. Paris Ser. A 270 (1970), 1498-1501.
5. A. Bacopoulos and B. Gaff, On the reduction of a problem of minimization of $n \div 1$ variables to a problem of one variable, SIAM J. Numer. Anal. 8 (1971), 97-103.
6. A. Bacopoulos, Simultaneous optimization of absolute and relative error in functional approximation, J. Approximation Theory 4 (1971), 1-5.
7. A. Bacopoulos and A. Dubuque, An efficient blend of the first algorithm of Remes with quadratic programming, Numer. Math., to appear.
8. A. Bacopoulos and I. Singer, On convex vectorial optimization in linear spaces, J. Opt. Appl., to appear.
9. A. Bacopoulos and R. V. M. Zahar, Short communication of an error analysis for absolute and relative approximation, to appear.
10. A. Bacopoulos and R. V. M. Zahar, An error analysis for absolute and relative approximation, to appear.
11. J. B. Diaz and H. W. Mclaughlin, Simultaneous approximation of a set of bounded real functions, Math. Comp. 23 (1969), 583-594.
12. C. B. Dunham, Simultaneous Chebychev approximation of functions on an interval, Proc. Amer. Math. Soc. 18 (1967), 472-477.
13. C. B. Dunham, Approximation with respect to sums of Chebychev norms, Aequationes Math. 8 (1972), 267-270.
14. W. B. Gearhart, On vectorial approximation, J. Approximation Theory 10 (1974), 49-63.
15. W. H. Ling, H. W. McLaughlin, and M. L. Smith, A computational procedure for the approximation of random functions, to appear.
16. D. Nairn, "Best Simultaneous Approximation in a Normed Linear Space," Ph.D. thesis, Rensselaer Polytechnic Institute, 1976.
