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1. INTRODUCTION

In this paper we study the problem of approximating two continuous
functions simultaneously by one approximating function. Our motivation is
the following. Let fi(x) and fy(x) be continuous real-valued functions, cach
defined on @ = x < b, occurring with probabilities w; and w, , respectively,
w, — w, = . The function F is an approximating function chosen before
f1 and /, are observed. The error is a random variable which assumes the
value | f; — F with probability w, and ! f, - F| with probability v, . (Here
| | denotes a suitably chosen norm.) Our goal is to choose F from a given
approximating family so as to minimize the expected value of the error. i.c.,
choose F to minimize

N

The direction of our investigation is a search for conditions which distinguish
the minimizing F from other elements of the approximating family. When
the polynomials of degree n or less are used us the approximating family and
the norm is chosen to be the Chebychev norm, we find a necessary condition
for the minimizing polynomial. If f; and f, are ordered. the necessary condi-
tion is also sufficient.
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APPROXIMATION OF RANDOM FUNCTIONS 11

Study of a related problem has been reported on in the approximation
literature by Bacopoulos and others, see [1-10, 12-16].

2. A NEcessaRY CONDITION FOR BEST APPROXIMATIONS

For a bounded real-valued function, g(x), defined on the compact real
interval [a, b}, we define the norm of g by | g || = sup,.<,«, | g(x); .

Our approximating family, -#. is a family of continuous real-valued
functions defined on [a, b], and the two functions to be approximated,
fi{x) and f.(x), are given continuous real-valued functions also defined on
[a. b]. Tn addition, the weight functions, wy(x) and w,(x), are nonnegative
real-valued continuous functions such that wy(x) + wy(x) -= | for each x in
{a. b}. A function F, in .# is said to be a best /,.-approximant to /; and f, if

wildy = FIl =Ty f - Bl =ik [y (fy = F) o Dw(fe — B)I

In this section we give a necessary condition for F, to be a best /;-approximant
when the approximating family is a family of polynomials (see Theorem 2.3).

For cach Fin & the error, || wi( /1 — F)|| + 1 wo(/s — F)I, is the sum of two
errors, namely L wy( f; — F)lland | wy( f, — F)| . Sometimes it will be necessary
to show the dependence of these two errors on both Fand f; (i =~ 1, 2) and
sometimes it will suffice to show the dependence only on f; (i - = 1. 2); so with
a slight abuse of notation we write, for cach Fin .#,

E,— E(Ff) = wifi =F) (- 1.2)

Also defined are an “‘upper error function,” M(F, x). and a “lower error
function.” m(F, x): For each Fin .# and for each x in {a, b].
M(F, x) = _rgir; {1:(x) + Ehwix)y,

and

m(F, x) = max {fi(x) — Ejfw(x)}.
If there exists x, in [a, b] and i (either i == | or i == 2) such that w;(x,) == 0, we
employ the convention, fi(x,) + E/w/(x,) — +oc. However, the require-

ment wi(x,) + wy(x,) = 1 guarantees that M(F, x,) and m(F, x,) are both
finite.

The proof of the following lemma is straightforward and is omitted.

Lemya 2.1, For each F in F and for each x in [a, b] one has

m(F, x) << F(x) <7 M(F, x).
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LEmMMA 2.2.  Let Fand G belong to F such that m(F, x) < G{x) < M(F, x)
Jor all x in [a, b]. Then one has

Cwlh = O T lwelfe — G) < im(f By - B

Proof. For each 7i(i= 1,2) and for all x in [g, ] one has. from the
hypothesis,

Jilx) — E(F, f)wix) << Gx) < fi(x) = E(F, f;)/wix).

This means that either E(F, f;) .- 0 or E(F, f,) > 0. Thus for at least one
i(i=1.2)

—E(F, [} < wix)[filx) — Gx)] < E(F, [2)
for all x in [a, b]; and for the other /,
—E(F, [)) < w0 fux) = Go)] = E(F. /)

for all x in [a, b]. Since all the functions are continuous, onc concludes that
for at least one 7, | w,(f; — G): < E(F. f;) and for the other 7. Tw,(f, -
G)! <. E(F, f). Thus,

(S = G Sy — O < ECELfy) - EGFL )
wil fy - B e fe P

Remark. The above proof shows that if m(f, x) < Glx) <~ M(F, x)for all
xin [a, b] then for one i, ! wi( /; — G)i <= E(F, f;) and for the otherl “wil S
G): <= E(F. /), which is a stronger comlu«lon than the conclusion of the
lemma as stated.

Our aim now is to show that if £in.# is o best /j-approximant to f; and f,
then it is a best approximant in another sense. to two functions related to f,
and f, . Known necessary conditions for best approximation in this other
sense, can then be translated to necessary conditions for best /j-approxima-
tion. The next definition is made for this purpose.

DeriNiTION 2.1, A function Fy in % is said to be a best /.-approximant
to two continuous real-valued functions, g,{x), g,(x) defined on [a. ] if

maxii & — Fy o1& — Foli = infmaxille,  Filig, - F L

I &1

The following theorem establishes @ connection between the /-problem
and the /,-problem.
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THEOREM 2.1. Let F belong to #, and define g,(x) == m(F, x) + || M(F) —
m(F)| and g,(x) = M(F, x) — || M(F) — m(F)||, for all x in [a, b]. If F is a best
[,-approximant to f, and f, then F is a best | -approximant to g, and g, .

Proof. Lemma 2.2 guarantees that for each G in & there exists an x;, in
[a, b] such that either G(x,) = M(F, x,), or G(Xy) << m(F, X,). Thus, either
18— Gl = M(F) —m(F)jor!|g — G| = | M(F) — m(F)|". Thus, infg.»
max {{{g;, — G|,lig. — G|} = | M(F) — m(F)]. On the other hand, using

Lemma 2.1 and the fact that g, <C g; gives
18 — FI < | M(F)—m(F),  and  |g, — F| =] M(F) — m(F)|.
It follows that
Inf maxifig, — GI, g — G} =~ maxi] g, — Fl,ilg — Fl},
Le., Fis a best [ .-approximant to g, and g, .

Remark. The above proof does not use the fact that /' is a best /;-approxi-
mant to f; and f5 . [t uses the fact that there exists no G in % such that both
E(G, f;) < E(F, fy) and E(G, f,) << E(F, f,). There are in general many such
elements F in .%. Theorem 2.1 then allows one to state necessary conditions
for these £'s in terms of known necessary conditions for the best /,.-approxi-
mants to the corresponding g,’s and g,s.

In [12], e.g., conditions are given which are necessary for / to be a best
 -approximant to g, and g, . We repeat them here, but to do so requires the
following two definitions [12].

DerFINITION 2.2, A point x, in [a, b] 1s called an /[ -straddle point for
F(in .# ) with respect to g,(x) and g,(x)( gu(x) < gy(x) for all x in [a. b)) if

max{l| g, — Fil. g — FII}  gulxe) — Flxy) =+ Flxg) — guolx).

{We observe that such an Fis necessarily a best /_-approximant to g, and g, .)

DerniTioN 2.3, An/ -approximant, F(in %), to g,(x) and g,(x) (g.(x) =
g,(x) for all x in [a, b]) is said to /.-alternate # times on [a, 6] if there exist
n -+ 1 points, x; (0 << i< n),a << x, << x; < < x, < b such that at |east
one of the folowing two conditions hold.

(1) Foreacheveniin{0, ..., n} and for each odd j in {0, I...., n} both
gi(x;) — F(x;) and F(x;) — gu(x;) assume the value max {li g, — F !,
lgo — Flj, or

(2) the same is true for each odd / and each even jin {0, 1,..., n}.

The following theorem deals with the case when the approximating family
F is P, , the polynomials of degree n or less.
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THEOREM 2.2 (see, e.g., [12]). The element F in P, is a best | .-approximant
to the continuous real functions g, , g, (gx(x) < gy(x) for all x in [a, b)) if and
only if F has an [ -stranddle point with respect to gl and g, or F [ -alternates
n -+ 1 times.

To translate this characterization to the /; problem we need two definitions.

DEerFINITION 2.4, A point x, in [a. b] is said to be an /;-straddle point for
F(in.#) with respect to f; and /5 if m(F, x,)  M(F. x,).

DerNiTION 2.5, An [fi-approximant F (in .#) to f; and f, is said to /;-

alternate # times on [a, ] if there exist # + 1 points a . x, =
Xy <2 <l x, <L b such that at least one of the following two (.OndltIOIl\
holds.

(1) Foreacheveniin{0, I,..., n}y and for each odd j in {0, 1...., n} both

M(F, x;) - F(x;) and m(F, x;) - F(x;), or

(2) the same is true for each odd i and each even .

The following theorem is the main theorem of this section.

THEOREM 2.3. If the element F in P, is a best l\-approximant io the two
real continuous functions fi(x), f,(x), a << x <2 b, (f; and f, are not necessarily
ordered) then either F has an li-straddle point or F l,-alternates n times.

Proof. The proof follows in a straightforward manner from Theorems 2.1

and 2.2.
The following example shows that F may alternate without being a best /;-

approximant.

ExampLE. Let {a, b] = [—2, 2], w(x) = walx) =}

Silx) = x £+ 2, 2 < x <0,
= —X + 2, 0 < x =02,
Sox) = x - 3, -2 < x 0,
- (Ag) X - 3, 0 2

and .# == P, . It is easily checked that f(x) = (—1/4) x — 7/4 [ -alternates
two times on [—2, 2]. However, F(x) is not a best /;-approximant. Indeed, the
best Il-approximants to fi and f, are exactly the polynomials of the form
F(x) = K <3

Remark. Tt can be shown that if a given Fin P, . /;-alternates » times on
[a, b] then for each Ge P, . G =£ F either E(G, f;) > E(F. f}) or £(G. f,) -
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E(F, f;). This observation could form the basis of a computational technique
for computing best /-approximants from P,. In [15] a computational
technique is discussed which does not use this observation but which could
be modified to do so.

Since /;-alternation is not sufficient to ensure best /;-approximation it would
be convenient to know how the definition of alternation must be altered to
obtain a sufficient condition. The authors believe that such a discovery would
lead to a more efficient computational technique than that discussed in [15].

3. /,-APPROXIMATION OF ORDERED FUNCTIONS

We consider now the problem of approximating in the /; sense, two real
continuous functions, f;(x) and f3(x), which are pointwise ordered: f,(x) <.
fi(x) for all x in [a, b]. The approximating family, #, is assumed to be a linear
family of real continuous functions on [g, b] and for ease of exposition we
assume the weight functions w(x) and w,(x) are identically equal to one on
[a, b] (wy(x) == wy(x) == 1). Our goal is to show that when fi(x) < fi(x) for all
xin [a. b] and when .# - P, | there exists a theorem which gives necessary
and sufficient conditions for best /-approximation in terms of alternation
and straddle points.

LemMa 3.1, Let fo(x) < fi(x) for all x in [a, b] and F in F be a best I,-
approximant to fy and f;. Then there exist an x; and x, in [a, b) such that
Fx)) - flx) — E(F ) and F(x,) = fy(x) + E(F. f3).

Proof. We prove that x, exists. That x, exists can be shown using similar
ideas. The proof is by contraposition. Assume that there does not exist such
an x, . ie. F(x) > fi(x) — E(F, f) for all x in [a, b]. Since both F(x) and
fi(x) are continuous on [a, b], there exists x, in [a. b] such that F(x,)
filxy) - E(F. ). Fuarther, F(x) < fy(x) -+ E(F, f;) for all x, so in particular,
Fixy) = folxy) + E(F, f5). Thus fi(x,) — E(F, f;) < fo(x0) + E(Ff3), or f1(Xy) —
fax,) =0 E(F, f3) — E(F, f1). Since the left-hand side is nonnegative. one
concludes that E(F, f;) =< E(F. f5).

Thus

F(x) = E(F ) 2= folx) — E(F. )

for all v in [a, b] and using the original assumption, one has, F(x) > fy{x) —
E(F. f,) for all x in [a, b]. Recalling the definition of m(x). given in Section 2,
we have shown that F(x) > m(x) for all x in {a, b]. Now defining ¢ ==
min,,.,, (F(x) — m(x)), and noting that ¢ is positive, one has M(x) =
F(x) — ¢ > m(x) for all xin [a, b]. Using Lemma 2.2, and the fact that .# is

Vot

640 20 1-2
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a linear family, one concludes that £(x) — x is a better /;-approximant to £
and f, than is F(x).

Lemwa 3.20 Let folx) <o f1(x) for all x in [a.b] and F in # be a besi -
approximant to f; and f, , and define ¢ - ME(F. fy) — E(F. f3)). Then I - ¢ iy
also a best [-approximant to fy and [, and further E(F - ¢, f) -= E(F - ¢, 1.).

Proof. We assume ﬁrst that £( f) © £(F. f,). Using the previous lemma
one concludes that E(F -~ ¢, fo) - E(F, f,) ~ ¢. We show next that E(F - ¢
J1y = E(F /) — ¢ On one hand one hus I(x) - ¢ fix)  EF. /) ¢
Jalxy — EQFC Sy - ¢ fidx) L E(F 1) — ¢ for all x in [a. b]. And on the
other hand, F(x) -+ ¢ = fi(x) — E(F, 1) - ¢ = fL{lx) —(E(F. [}y ¢) for all
X on [a, b] with equality holding tor at least one x by the previous lemma.
chce E - ¢ fy) — E(F., f1) - ¢. Combining these results gives E(F - ¢,
f) 4+ E(F e /) ECF, fi) -1 E(F, f,) Thus - -~ ¢is a best /j-approximant.
It is dedr that E(F - . f1) — E(F - o f3). The case, E(F, f}) < FEUF. f3) is
treated similarly, The case ¢ - 0is trivial.

Remark 3.1. If onc assumes, e.g., that # is a finite-dimensional linear
family it is easy to prove that f; and f, have a best /-approximant. We
note that Lemma 3.2 therefore guarantecs the existence of a best /-approxi-
mant to f, and £, (f, - f;) with equal errors.

LEMMA 3.3, Let Fin - # be a best l-approximant to /; and f, with E(F. 1)
E(F, f5). Then F is a best | -approximant to f, and f, .

Proof. The proot follows from the fact that for every G in #

2max{if, — G L f— G EG ) - EGL )
ECFLf) - ECFLS) 2max{f - F
fy — F L

Remark 3.2. The above two lemmas show that when # is a linear
family and fy(x) = fi(x) for all x in {a, »] then every best /;-approximant is u
translate of some best /,-approximant.

Remark 3.3. We note that the proof of Lemma 3.3 does not depend upon
the linearity of .# nor the ordering of f; and /. .

LEMMA 3.4.  Let [, . [, be given with fu(x) - fi(x) for all x in[a, b]. Assiune
Fin # is a best | .~approximant to [ , [, and let

¢y [ max (fy(x) — F(x)) = mm /1(\) — F(xnl2

xclabl
and

¢ [max (folx) — F(x)) - mm (fAx) — Fxn)2.

xefa,h]
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Then the following are true.

(a) ¢, =0, and ¢; < 0.

(by If celcy, ), then F -i- ¢ is a best [i-approximant to [, . [f,. In
particular. F is a best li-approximant to f, . f, .

(¢) Ifcc(-w.e)Ule,. o), then F - cis not a best l-approximant

tofi.fa.

Proof. 1t is convenient to show first that £ is a best /-approximant to /,
and f,. To see this we note that E(F,f)) - E(F, f,) (which can be easily
verified). Now let G in % be a best /-approximant to f; and £, with the
property that E(G, f;) ~ E(G, ;). Then one has

LUF f) -+ ECF fo) = 2max{[ F — fy i 0 F — o
L 2maxdt G — 10,16 —fy
= E(G. fy) -+ E(G.fy).

which means that Fis also a best /;-approximant to f; and f, .

Since F is a best /-approximant, Lemma 3.1 may be employed vielding
MaX,er, 01 (f1(X) - FX) — E(F, f;). mingep, 1 (fi(x) - F(x)) = —E(F, f)
and thus ¢, »= 0. Similarly ¢, <2 0 holds. We prove next part (b) and (¢) of the
lemma.

Let c€[0. ¢,]. From Lemma 3.1, it follows that E(F ¢, ) -~ E(F. 1) = c.
We show that E(F =+ ¢, f}) = E(F. f}) — c.

First observe that F(x) + ¢ = fi(x) - E(F, fy) — ¢ = flx) —(E(F. f;) — ¢)
is valid on [a, b], with equality for some value of x. due to Lemma 3.1.
Second, note that ¢ < ¢, = [E(F, /1) + min,c, a1 (fi{x) — F(0)]2 implies
that ¢ -7 [E(F, f;) — (Ji(x) — F(x)]/2 for all x € [a, b]. Rearranging this last
inequality yields F(x) -+ ¢ =L fi(x) -+ E(F, fy) — ¢ on [a, b]. Therefore
E(F 5, f1)y = E(F. f}) -- ¢ and we obtain E(F-' . fy)  E(] = c. f3) =
E(Ffy) + E(F.f,).

Next let ce(cy, + o). Again by Lemma 3.1. we have F(F - ¢, f3)
E( 1) + ¢. However with ¢ o~ ¢,, a rearrangement of this inequality
vields, E(F =+ ¢. fi) = E(F. f}) — ¢. Thus E(F 5 ¢, f;}) — FE(F -~ ¢, [5)
E(F, ;) -+ E(F. f,). and therefore F -~ ¢ is not a best /-upproximant to
ViR

A similar argument for ¢ € [¢; . 0] and ¢ € (-~ o, ¢;) completes the proof.

We conclude Section 3 with an alternation theorem for a best /-approxi-
mant of two ordered functions.

THEOREM 3.1, Let fi(x) and [y(x) be real-valued continuous functions with
Solxy < filx) for all x in {a, b). Let the approximating family -# be the polr-
nomials of degree n or less, and let F belong to % . Then F is a best | -approxi-
mant to f1 and fy if and only if at least one of the following three conditions holds.
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(1) There exist points x, (0 .k - 1) such that a - x, < x, <2 " -
X, = bandsuch that for each even i in {0, 1...., n} and for each odd jini0, 1,..., n;
both F(x;) -~ fox;) -+ E(F. fy) and F(x;) -~ filx;) — ECF, i)

(2)  condition (1) holds for each odd i and each even j.

(3) there exists an x, in [a, b] such that
Silxg) — ECFf) - 1Axg) = EUEL ).

{We think of the phenomena of conditions (1) and (2) as alternation
phenomena: e.g.. if condition (1) holds we say that F(x) alternates between
Jolxy - ECFLfy) and fi(x) - ECFL /)

Proof. Case 1. Assume E(F, f;) - EUF, f3). If Fis a best /;-approximant
then £ is a best /, -approximant and the proof follows from Theorem 2.2. On
the other hand. if one of the three conditions holds. then F is a best /,-
approximant by Theorem 2.2 and hence a best /-approximant.

Case 2. Assume E(F./[y) .~ E(F. /). {The case E(F./[;) < E(F,/,) can
be argued in a similar manner.) Choose the real number ¢ such that £+ ¢
is a best /-approximant to f; and f, and E(F < ¢, /) -+ F(F = ¢, fy). From
the proof of Lemma 3.3 one has that E(F ~+ ¢, f1) - E(F. f1) - ¢and E(F -
. fs)  ECF 1) -+ ¢ This observation allows one to reduce Case 2 to Case |
where /7 ¢ plays the role of /in Case 1.

The following example demonstrates that the ordering assumption,
1y /. in Theorem 3.1 is necessary.

Examvpre.  (For simplicity we describe the example in lieu of a lengthy
constructive presentation.) Let - # P, and {a. 0] [0, !]. One can easily
construct two nonordered tunctions /; . f, such that: (a) ¥ 0 is a best /;-
approximation from Py . (b) F is a best Chebyshev approximation to both f,
and f, from P, . (c) alternation of F(x) between fy(x) - E(F, f3) and [y(x) -
E(F, f,) occurs in [0, 1), (d) alternation of F(x) between fy(x) © E(F. ;) and
Xy — E(F. /) occurs in (L. 1], and vet (¢) F does not alternate twice in the
[, sense between either fi(x)  E(F.f)) and fi(x) . E(F,f,) or between
Jalx) -~ ECF. fy) and fi(x) i E(F.[s). Note, however. that £ will alternate
twice in the /, sense between M(F. x) and m(F. x).

4. COMMON ALTERNATION POINTS

In this section we investigate further the /-approximation problem as
discussed in Section 2. Specifically, we are not assuming that the functions /,
and f, are ordered and we are not assuming that the weight functions w and
w, are both identically one. We do specialize the problem by assuming that
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the approximating family, &. is linear. The real continuous functions
b1(X), ¢a(X),..., Pu(x) @ << x =1 b, are given and assumed to be linearly
independent over the real numbers. The family # consists of exactly those
functions of the form a,¢,(x) + - -+ a@,$,(x) where a; is real, 1 . 7 nm.
Letting A denote the vector (ay ,..., a,) in £E* (n-dimensional Euclidean space),
we denote (with slight abuse of notation) the general element of -# by
F o2 F(A) = F(A, x) = ay¢y(x) + - -~ a,¢,(x). Elements of % can then be
represented by their corresponding vectors 4. The two functions fy and /,
will 1n general have many best /;-approximants: we write

ROAACESIFA) — fi = KA — [y i L F o B gl

The set R in £ can be thought of as representing the best /;-approximants to
Jr and f, . Standard arguments show that R is compact, convex, and non-
empty. In particular, if F(4,, x) and F(A,, A\‘) are both best /;-approximants
to /i and f; then so is F(A x)y where A, == Ady -1 (1 DA, 07 A =0 1L
We use the notation E(A,f) E(F(A ._/) in what follows.

LemMMma 4.1. Let F(A, . x), F(A, ., x) be best l-approximants to f, . s from
F AN Ay = Ay (0 = N Ay forQ X Lothen (A4, . 1)) AE(A, . f) —
(L= 2) E(Ay . f3), L0 2

Proof. Since F{A;. x) is a best /| —approximation.

E(Ay ) + E(A, 1)
ME(A; L f1) 1 E(AL f)) — (0 — MDA, f) -~ ECALfa)
= [AE(Ay L f) (1 = X E(A,, )]
[/\E(A] Sah = (- A) (A, . 1))

But for each i, 1 < i <2,

LAy [ = willf: — F(Ay, )
= wlfy — (AF(AL ) -+ (0 — ) F(A, )]
SAEALLf) S D) EA, L)

Combining these remarks. we obtain E(Ay. /) = AE(A, . /) — (1 — X)
FlAs ) b eni= 2

Lewva 42 Let F(A,. x), F(A,. x) be best l-approximants from # 1o
fi-fy Let Ay —= A4y -~ (1 — NV A,,0 <A <1 Then
(a) F(Ag, xo) = fi(xy) — E(Ay, f))wi(x,) if and oniv if
F(Ay, xo) = filxo) — E(Ay, f2)]wixo) and
F(As, xy) == fi{x,) — E(Ay [ wilxg), 170 =2 2, x, € [a, b] and
(bY a similar statement holds with a plus sien.
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Proof.  We prove part (a). Since w;(x,) - - O implies that all three expres-
sions above are minus infinity, we may assume wy(x,) == 0

Suppose F(A; . xy) 7= flx,) — E(Ay, f)/wix,). Using Lemma 4.1, we have
AE(A; - f)jwdxg) 4 (1 — A) E(Ay, f)wixg) == E(Ay | [)Iwdxe) - fi(xo)
F(A:; < Xy) A filxg) — F(A; L x0)) -+ (1 — Dflxg) — F(A, | x0)) = AE(A
faiwixy) - (1 = A) E(Ay. f)iw(x,). Since the first and last terms are the
same, equality holds throughout. We obtain

FA, . xg) - Jilxy) ~ E(A; f)iwax,y forj - ltandj 2

On the other hand, suppose FiA;, x,) = filxe) — E(A;, [)wix,) forj == 1
and 2. Then filx,) — Fldy, x0) = A filxg) — F(4; | u)) (= N(fixo) -
F(Ap o x0) o MEAL L f)wilxg) -+ (1 - A E(Ag L fi)iwdxy) - E(Ay L )il
using Lemma 4.1 Thus we have F(A,, x,) == fi(xy) = (A3 Jaoiwxg), == 12

We turn next to the main result of this section. Recail that the set R defined
earlier consists of all those parameters 4 in £ which yield a best /;-approxi-
mants. We shall say that a point 4 ¢ Ris an interior point of Rif 4 is a strict
convex combination of the boundary points of every line segment in R
containing 4. We also introduce the following terminology. A set of points
a Xy DXy <L X, -2 s -0y, o0 b owill be called an alternation set for 4 if
F(A, x) alternates between M(F(A4, x), x) and m(F(A4, x}, x) on {x,}7 , in the
sense of Delinition 2.5, Further, a point x,, in [a, b] will be called an extreme
point for A if either F(A4. x;) - M{F(A, x,). x) or F(A, xy) - mlF(A. X)), x,)

THEOREM 4.1 Lei [i . 1. be given and let B be the parameter set of besi
li-approximants fron - # where 7 is a linear jamily as described aboive. Assunie
Ay is an interior point of R.

(a) If ext(A,) is a set of extreme points for A, , then ¢xt(Ay) is a set of
extreme points for everv A in R.

(b)Y ifalt(Ay) is a set of alternation points for A, . thein alt(A4,) is a set of
alternation points for every A in R.

(¢y If x, is an l-straddle point for Ay | then x, is an I\-straddle point for
crery A in R.

Proo/.  We prove part (b). Parts (a) and (¢) are shown in a similar manner.

Let A be any element of R and consider the Iine segment in R determined
by A and A4, . Call 4, , A, the boundary points of this line segment. Suppose
that x, is in alt(Ag). Then we have F(A, . x,.) - fillx,) - E(AL, f)hw(x,) for
some choice of 7, 1 =172 2, and some choice of -!-. Applying Lemma 4.2
twice. it follows that F(A, x;) = fix,) == E(A, f)/wix,) for the same choice
of 7 and the same choice of -, Since this is true for every x, in alt(4,), alt(4,)
is an alternation set for A.
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Remark. Let # == P, and let 4, be in the interior of the set R. Observe
that if F(A4;, x) alternates in the /; sense, then Theorem 4.1 guarantees that
every best /;-approximant alternates at least n + 1 times.

We close Section 4 with an example which illustrates Theorem 4.1.

EXAMPLE. Let [a, 6] = [—1, 1], wy(x) == wo(x) == 3,

F = Py filx) = X

folx) = x-- G —lmix -y
= —x + % —d <y
=X -4, < x <1

It is easily checked that R == [4, 1], and the error p - £. For cvery 4 € int
(Ry = (1, ), alt(A4) = {--1, 0} is an alternation set for A. In fact {1, 0} are
the only extreme points for 4 € (4, ). As predicted by Theorem 4.1, {14, 0}
is also an alternation set for the boundary parameters A, == 4 and 4, = .
However, for the boundary parameters additional extreme points may exist.
A simple diagram shows that in fact {—1,0, —1, 1} are extreme points for A,
and {—1,0, 1} are extreme points for A4, .
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